If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-30-7n+49n^2=0
a = 49; b = -7; c = -30;
Δ = b2-4ac
Δ = -72-4·49·(-30)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-77}{2*49}=\frac{-70}{98} =-5/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+77}{2*49}=\frac{84}{98} =6/7 $
| -3=2+p/5 | | 1/4n+11=-9 | | 8(4x-24)=16x+8x+32 | | -8+9n=19 | | 8×+6y=13 | | X=31y+7 | | 3×-4y=-17 | | 64=m^2+3m | | 8r-6r+5=7r+5-r= | | P=13+6x/11 | | 15=-3m+5 | | -2m+7=15 | | 6x+4x+8+3x+12=180 | | 3(h-9)+2h=-100+103 | | 11=-3m+5 | | x/9+x=7/18 | | (4x+1)^2=-4 | | 10+((2-x)/3)=7 | | a/9+2=3.5 | | 24+n÷4=10 | | 4(6x-1)^2-5=228 | | 9=-3m+5 | | I(x)=-x¨+60x, | | 102=3(6x-2) | | (3x/2)-(x+2)/4)=-8 | | 8-3x=-(3-8x | | (2x-4)(6x+8)=0 | | (3x/2)-x+2/4)=-8 | | 8/5y+11=-5 | | X=(2x+7) | | -3/2=-2/3v-6/7 | | 3/4n-5=72 |